organic papers

Received 13 June 2005

Accepted 18 July 2005

Online 28 September 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ji Li,* Xiang-Gao Meng and Zhan-Ru Liao

Department of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: zrliao@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.059 wR factor = 0.174 Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N,*N*'-Bis(benzimidazol-1-ium-2-ylmethyl)-*N*,*N*'-bis(benzimidazol-2-ylmethyl)cyclohexane-1,2-*trans*-diamine bis(perchlorate) dihydrate

In the cation of the title compound, $C_{38}H_{40}N_{10}^{2+}$.-2ClO₄⁻·2H₂O, the cyclohexanediamine group has a twofold axis and two of the four pendant benzimidazole groups are protonated. There are hydrogen bonds and π - π interactions in the crystal structure.

Comment

Histidine is an important ligand in iron, copper, zinc and manganese metalloproteins, such as superoxide dismutases, lipoxygenase, tyrosinase, amine oxidase and hemocyanin (Que & Raymond, 1996; Kaim & Rall, 1996). N,N,N',N'-Tetrakis(2-benzimidazolymethyl)-1,2-*trans*-diaminocyclohexane (ctb) is a benzimidazole-rich ligand, which has the advantage that the basicity of the coordinating group approximates that of histidine (p K_b : histidine = 7.96 and benzimidazole = 8.47; Main, 1992). We obtained the title compound, (I), H₂ctb²⁺·-2CIO₄⁻⁻·2H₂O, in the process of synthesizing a ctb–metal complex in 95% ethanol.

In (I), the H₂ctb²⁺ cation has a twofold axis (Fig. 1). All four benzimidazolyl groups lie on one side of the cyclohexane ring, which is in a chair form similar to the ring in 1,2-cyclohexanediaminetetraacetic acid. The amine N atoms [N1 and N1ⁱ; symmetry code: (i) -x, y, $\frac{1}{2} - z$] adopt a *trans* conformation. There are intramolecular N–H···N hydrogen bonds (N5– H5···N2ⁱ and the symmetry-related bond), and also N– H···O and O–H···O intermolecular hydrogen bonds (Table 1) between H₂ctb²⁺ and H₂O or perchlorate, producing a three-dimensional framework (Fig. 2).

In the H₂ctb²⁺ cation, two five-membered rings, denoted A (atoms N2/C5/N3/C6/C11) and B (N4/C13/N5/C19/C14), are stacked 3.471 (2) Å apart, the dihedral angle between them being 18.88 (2)°. Furthermore, intermolecular π - π interactions exist between ring A and ring B at $(x, 1 - y, z - \frac{1}{2})$, the distance between the centroids of the rings being 3.710 (2) Å and the dihedral angle 9.58 (2)° (Fig. 3).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Acta Cryst. (2005). E61, o3421–o3423

Figure 1

The structure of (I), showing displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (a) -x, y, $\frac{1}{2} - z$.]

Experimental

All reagents and solvents were used as obtained without further purification. Compound (I) was synthesized by refluxing stoichiometric quantities (1:2 molar ratio) of ctb (0.32 g, 0.5 mmol) and ferric perchlorate (0.52 g, 1 mmol) in 95% ethanol (30 ml) at 333 K for 6 h. The solution was cooled to room temperature, filtered and evaporated to obtain the product (yield 42%). Crystals of (I) were grown from an ethanol solution by slow evaporation.

Crystal data

$C_{38}H_{40}N_{10}^{2+2}$ ·2ClO ₄ ·2H ₂ O $M_r = 871.73$ Orthorhombic, <i>Pbcn</i> a = 16.4609 (10) Å b = 17.6108 (11) Å c = 13.8677 (9) Å V = 4020.1 (4) Å ³ Z = 4 $D_x = 1.440$ Mg m ⁻³	Mo K α radiation Cell parameters from 5855 reflections $\theta = 2.2-24.8^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 292 (2) K Block, pink $0.40 \times 0.30 \times 0.22 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: none 19135 measured reflections 3536 independent reflections	2954 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 25.0^{\circ}$ $h = -19 \rightarrow 14$ $k = -20 \rightarrow 20$ $l = -16 \rightarrow 16$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.174$ S = 1.04 3536 reflections 291 parameters H atome treated by a mixture of	$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.0915P)^2 \\ &+ 3.4612P] \\ \text{where } P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\rm min} &= -0.42 \text{ e } \text{\AA}^{-3} \end{split}$

Figure 2

The linking of the molecules via hydrogen bonds (dashed lines).

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N5-H5\cdots N2^{i}$	0.85(1)	2.24 (2)	3.053 (3)	160 (3)
N3-H3···O2 ⁱⁱ	0.85 (1)	2.38 (2)	3.081 (5)	140(2)
N3-H3···O4 ⁱⁱ	0.85(1)	2.54(2)	3.342 (8)	158 (3)
$N4-H4\cdots O1W$	0.85 (1)	1.90 (1)	2.744 (3)	172 (3)
O1W−H1WA···O4 ⁱⁱ	0.81(1)	2.02(2)	2.808 (5)	162 (6)
$O1W - H1WB \cdots O3^{iii}$	0.82(1)	2.12(2)	2.904 (5)	161 (3)
$C1-H1\cdots O1^{i}$	0.98	2.47	3.446 (4)	175
Symmetry codes: ($x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$	i) $-x, y, -x$	$z + \frac{1}{2};$ (ii)	$-x + \frac{1}{2}, -y + \frac{1}{2}$	$\frac{1}{2}, z - \frac{1}{2};$ (iii)

H atoms bonded to C atoms were placed at calculated positions, with C-H distances of 0.93–0.97 Å, and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bonded to N atoms and the water O atom were located in difference density maps and refined with the restraints N-H = 0.86 (1) Å, O-H = 0.82 (1) Å and H1WA···H1WB = 1.34 (1) Å, but their $U_{iso}(H)$ parameters were refined freely.

A view of the π - π stacking in the crystal structure. H atoms have been omitted. [Symmetry codes: (a) -x, y, $\frac{1}{2} - z$; (d) x, 1 - y, $z - \frac{1}{2}$; (e) -x, y, $-\frac{1}{2} - z$.]

independent and constrained

refinement

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank the Education Office of Anhui Province, China, for research grant No. 2004kj300zd.

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SMART (Version 5.628) and SAINT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Kaim, W. & Rall, J. (1996). Angew. Chem. Int. Ed. Engl. 35, 43-60.
- Main, F. (1992). Coord. Chem. Rev. 120, 325-359.
- Que, L. Jr & Raymond, Y. N. H. (1996). Chem. Rev. 96, 2607-2624.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.